116 research outputs found

    Some of my Favourite Problems in Number Theory, Combinatorics, and Geometry

    Get PDF
    To the memor!l of m!l old friend Professor George Sved.I heard of his untimel!l death while writing this paper

    STAND: A Spatio-Temporal Algorithm for Network Diffusion Simulation

    Full text link
    Information, ideas, and diseases, or more generally, contagions, spread over space and time through individual transmissions via social networks, as well as through external sources. A detailed picture of any diffusion process can be achieved only when both a good network structure and individual diffusion pathways are obtained. The advent of rich social, media and locational data allows us to study and model this diffusion process in more detail than previously possible. Nevertheless, how information, ideas or diseases are propagated through the network as an overall process is difficult to trace. This propagation is continuous over space and time, where individual transmissions occur at different rates via complex, latent connections. To tackle this challenge, a probabilistic spatiotemporal algorithm for network diffusion (STAND) is developed based on the survival model in this research. Both time and spatial distance are used as explanatory variables to simulate the diffusion process over two different network structures. The aim is to provide a more detailed measure of how different contagions are transmitted through various networks where nodes are geographic places at a large scale

    Universality for a class of random band matrices

    Full text link
    We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, WNW\sim N. All previous results concerning universality of non-Gaussian random matrices are for mean-field models. By relying on a new mean-field reduction technique, we deduce universality from quantum unique ergodicity for band matrices

    Bulk Universality of General β\beta-Ensembles with Non-convex Potential

    Full text link
    We prove the bulk universality of the β\beta-ensembles with non-convex regular analytic potentials for any β>0\beta>0. This removes the convexity assumption appeared in our earlier work. The convexity condition enabled us to use the logarithmic Sobolev inequality to estimate events with small probability. The new idea is to introduce a "convexified measure" so that the local statistics are preserved under this convexification.Comment: arXiv admin note: text overlap with arXiv:1104.227

    Universality of General β\beta-Ensembles

    Full text link
    We prove the universality of the β\beta-ensembles with convex analytic potentials and for any β>0\beta>0, i.e. we show that the spacing distributions of log-gases at any inverse temperature β\beta coincide with those of the Gaussian β\beta-ensembles.Comment: Sep 21, 2011: Lemma 3.9 was corrected. Feb 5: Some typos in Lemma 5.9 were correcte

    The Landauer Resistance and Band Spectra for the Counting Quantum Turing Machine

    Get PDF
    The generalized counting quantum Turing machine (GCQTM) is a machine which, for any N, enumerates the first 2N2^{N} integers in succession as binary strings. The generalization consists of associating a potential with read-1 steps only. The Landauer Resistance (LR) and band spectra were determined for the tight binding Hamiltonians associated with the GCQTM for energies both above and below the potential height. For parameters and potentials in the electron region, the LR fluctuates rapidly between very high and very low values as a function of momentum. The rapidity and extent of the fluctuations increases rapidly with increasing N. For N=18, the largest value considered, the LR shows good transmission probability as a function of momentum with numerous holes of very high LR values present. This is true for energies above and below the potential height. It is suggested that the main features of the LR can be explained by coherent superposition of the component waves reflected from or transmitted through the 2N12^{N-1} potentials in the distribution. If this explanation is correct, it provides a dramatic illustration of the effects of quantum nonlocality.Comment: 19 pages Latex, elsart.sty file included, 12 postscript figures, Submitted to PhysComp96 for publication in Physica-

    Transmission and Spectral Aspects of Tight Binding Hamiltonians for the Counting Quantum Turing Machine

    Full text link
    It was recently shown that a generalization of quantum Turing machines (QTMs), in which potentials are associated with elementary steps or transitions of the computation, generates potential distributions along computation paths of states in some basis B. The distributions are computable and are thus periodic or have deterministic disorder. These generalized machines (GQTMs) can be used to investigate the effect of potentials in causing reflections and reducing the completion probability of computations. This work is extended here by determination of the spectral and transmission properties of an example GQTM which enumerates the integers as binary strings. A potential is associated with just one type of step. For many computation paths the potential distributions are initial segments of a quasiperiodic distribution that corresponds to a substitution sequence. The energy band spectra and Landauer Resistance (LR) are calculated for energies below the barrier height by use of transfer matrices. The LR fluctuates rapidly with momentum with minima close to or at band-gap edges. For several values of the parameters, there is good transmission over some momentum regions.Comment: 22 pages Latex, 13 postscript figures, Submitted to Phys. Rev.

    Quantum Ballistic Evolution in Quantum Mechanics: Application to Quantum Computers

    Full text link
    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators TT is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proved that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics.Comment: 37 pages Latexwith 2 postscript figures tar+gzip+uuencoded, to be published in Phys. Rev.
    corecore